Principles of Operation
Radio-controlled cars use a common set of components for their control and operation. All cars require a transmitter, which has the joysticks for control, or in pistol grip form, a trigger for throttle and a wheel for turning, and a receiver which sits inside the car. The receiver changes the radio signal broadcast from the transmitter into suitable electrical control signals for the other components of the control system. Most radio systems utilize amplitude modulation for the radio signal and encode the control positions with pulse width modulation.


Upgraded radio systems are available that use the more robust frequency modulation and pulse code modulation. Recently however, 2.4 GHz frequency radios have become the standard for hobby-grade R/C cars. The radio is wired up to either electronic speed controls or servomechanisms (shortened to "servo" in common usage) which perform actions such as throttle control, braking, steering, and on some cars, engaging either forward or reverse gears. Electronic speed controls and servos are commanded by the receiver through pulse width modulation; pulse duration sets either the amount of current that an electronic speed control allows to flow into the electric motor or sets the angle of the servo. On these models the servo is attached to at least the steering mechanism; rotation of the servo is mechanically changed into a force which steers the wheels on the model, generally through adjustable turnbuckle linkages. Servo savers are integrated into all steering linkages and some nitro throttle linkages. A servo saver is a flexible link between the servo and its linkage that protects the servo's internal gears from damage during impacts or stress.